
Developing End-User Programmable Service-Oriented

Applications with VINCA
Jian Yu1, Jianwu Wang1,2, Yanbo Han1, Shaohua Yang1,2, Liyong Zhang1,2

1 (Software Division, Institute of Computing Technology, CAS, Beijing 100080)
2 (Graduate School of CAS, Beijing 100089)

Abstract
Raising end-user’s programmability is a promising way to ensure more flexible and higher-quality
information provision and utilization, and to better cope with spontaneous business requirements
as well. This paper presents the state-of-the-art developments of the end-user service composition
language VINCA and its corresponding approach to developing end-user programmable
applications on the basis of Service-Oriented Architecture. With VINCA, end-users can visually
express (and later easily change) their personalized requirements from their business viewpoints,
letting the underlying supporting environment take care of the technical details. The presented
language and approach have been tried out with different real-world scenarios, and the evaluation
in this regard is given in the paper.

1 Introduction

Just-in-time collaboration and virtual organization of individual applications are needed in many
occasions in our networked world. The traditional way of software development, which is
dependent on IT professionals, is often blocking the way due mainly to its low productivity, and
thus hinders applications flexibility. End-user involvement and end-user programmability become
very essential in timely development of applications. The service-oriented computing paradigm,
which is currently highlighted by Web services technologies, provides an effective means of
application abstraction and integration with its loosely-coupled architecture, and directly or
indirectly enables end-user programming. By abstracting autonomous and heterogeneous
application functionalities as services, we can assemble more flexibly individual applications to
construct distributed information systems. Service composition has thus gained momentum
[Bena02]. Current Web services composition languages such as BPEL4WS [Andr03] and BPML
[BPMI02] are developed for IT professionals and still weak in dealing with a spectrum of
application scenarios that require Web services be quickly composed and reconfigured by non-IT
professionals in order to cope with the spontaneity and volatility of user requirements. Examples
of such application scenarios include dynamic supply chain management, handling of city
emergency, and management of massive public events [Levi03] [Reic96]. As a matter of fact, we
are undertaking two real-world projects that have exactly the same requirements. The first project
is called FLAME2008, which is abbreviated from A Flexible Semantic Web Service Management
Environment for the Olympic Games Beijing 2008 [Holt03]. It is an effort to develop a service
mediation platform for the Olympic Games Beijing 2008, on which an effective information
system providing personalized and one-stop information services to the general public, should be
based. The second project is called AMGrid [Cafi02a], which targets at information sharing
among different manufacturing enterprises. In fact, the problems addressed in this paper mainly
come from these two projects.
In this paper, we elaborate our user-centric, business-level service composition language – VINCA

shortened from A Visual and Personalized Business-level Composition Language for Chaining
Web-based Services [Han03] and present its new developments. The core metaphor behind
VINCA is: end-users can visually express (and later change) their personalized requirements from
their business viewpoints, letting the underlying supporting environment take care of the technical
details.
As shown in Fig. 1, the key technologies supporting VINCA are service annotation, service
virtualization, service visualization and dynamic service composition1. Service virtualization and
dynamic service composition are of major concern in this paper. With service virtualization,
technical and supplementary details of Web services can be hidden and only the business-specific
facets are presented to end-users. After end-users express their business requirements by
composing these virtualized business-level services, a service mapping mechanism maps these
virtual resources to real-world Web services. Fig. 1 shows two blocks of steps that VINCA takes to
develop applications: 1) Semantic information is first added to primitive Web services, then
business-level services are formed through service virtualization, finally they are visually
presented to end-users through service visualization; 2) End-users “see” all available services in
their business terms, and may select and compose business-level services that conform to their
requirements in a just-in-time fashion. The user-composed business-level model is mapped to a
software-level model while concrete Web services are dynamically bound to business-level
services, and concrete Web services are invoked in interpreting the software-level model.

Web Services

 Business-Level Services

Sem antic Web Serv ices

Sem antic Annotation

Service Virtualization

VINCA Sp ecification

Invocation

M app ing

Business-Level M odel

Personalized Serv ice Visualization

1.

2.

3. 5.

6.

7.

End-user Programmin g4.

Software-Level M odel

(Business-Level Service Comp osition)

Fig. 1: Application development with VINCA

In order to achieve the above-stated end-user programmability, we have to overcome quite a large
number of barriers, answering fundamental questions like: What the core programming constructs
for end-users are? How they are abstracted from or related to software-level constructs? What the
fundamental rules are for an end-user to grasp to program her applications? How can the end-user
programming paradigm find widespread uses? This paper focuses on the first two problems and
tries to resolve them with our service virtualization mechanism and business-level service
composition. It is organized as follows: Section 2 presents a motivating scenario and states the

1 We focus on a limited form of dynamic service composition. We also refer the process of composing abstract
business-level services and automatically mapping these abstract services to concrete Web services as dynamic
service composition.

problems VINCA wants to solve. Section 3 briefly introduces the unique features of VINCA and
defines the core elements of the language. And the most important element of VINCA- Business
Service is explained in detail in section 4, which reflects the core abstraction mechanism of
VINCA. Section 5 analyzes the approach to applying VINCA for developing service-oriented
applications, and section 6 illustrates the supporting environment of VINCA. Application and
evaluation of VINCA, including a comparative study of related work, are discussed in section 7.
Finally we conclude in section 8.

2 Problem Statement with a Motivating Scenario
To introduce the design rationales of VINCA, we choose a typical scenario from FLAME2008,
which is also used as a running example in this paper.
It is assumed that, in 2008, various parties will provide a large variety of information services for
the general public, and something is needed to help different groups of users (athletes, visitors,
organizers, etc.) to define their personalized “applications” to make full use of the services
supplied. Among the users is Mr. Johnson, a businessman on vacation. He is going to watch some
games and do some sightseeing in Beijing during the Olympic Games. Before he leaves for
Beijing, he can use the FLAME2008-based information system to schedule his activities and enjoy
the multitude of services. Mr. Johnson plans to arrive at Beijing on Aug. 10, 2008. Since the
airline must be booked one month earlier, he wants to submit his booking request at 8 AM on July
10. After booking an airline ticket successfully, he also wants to reserve a hotel and book the
tennis game ticket on Aug. 12. Before setting off on Aug. 9, Mr. Johnson wishes to makes a tour
reservation for the Great Wall on Aug. 11. After the tennis game at 5 PM on Aug. 12, he wants to
enquire the restaurants around him, so he can conveniently find a desirable restaurant and enjoy
some Chinese food. To demonstrate the volatility of requirements, let’s suppose that just a few
days before his setting off for Beijing, Mr. Johnson learns that it rains frequently these days in
Beijing, so he decides to change his schedule. He wants to enquire the weather of Aug. 12 first and
then decides his movement according to the enquired result: if it rains, he will reserve the tour to
the Forbidden City, otherwise, he will reserve the tour to the Great Wall. Mr. Johnson’s final
schedule2 is given in Fig. 2.

Book
Airline
Ticket

Reserve
Hotel

Book Tennis
Ticket

Enquire
Weather

Reserve Tour
Service to the

Forbidden Cityrain

July 10,
2008

Aug. 9,
2008

Enquire
Restaurant

TimeAug. 12,
2008

Tour Watch
Game

5 PM

Reserve Tour
Service to the

Great Wall

Aug. 11,
2008

otherwise

8 AM 8 AM

Fig. 2: Mr. Johnson’s Olympic Game Schedule

Supposing that Web services that can provide above-stated functionalities (like “Book Airline
Ticket”, “Reserve Hotel” etc.) have already existed, to build an application that can fulfill Mr.
Johnson’s requirements, we can use some kind of service composition language such as BPEL or
BPML. But it demands that the application builders should have IT-specific knowledge, which is
difficult for normal end-users. If we can enable end-users to “program” their personalized
applications by composing business-level services that they are familiar with, it will save their
time and money to develop applications this way. Furthermore, it will be more convenient and

2 The dashed rectangles denote the activities that do not need the help of any web Services.

timely for them to adjust/reconfigure their applications.
From this scenario, we can also identify the following problems:
1) Most traditional process languages only support arranging tasks by control flow, but

sometimes it’s more convenient for end-users to arrange their personalized services
temporally.

2) Mr. Johnson is not familiar with Beijing, how can he tell “Enquire Restaurant” service his
current location in a convenient way?

3) Mr. Johnson may compose his schedule on a laptop, but he may take only his PDA or smart
phone with him to the tennis game, how can he still enjoy using the services?

In the next section, we discuss our solutions to the above-stated problems by introducing the
basics of our end-user programmable language: VINCA.

3 Basics of the End-user Programming Language VINCA

3.1 Unique Features
Though VINCA is yet another service composition language, it differs from others in the
following aspects:

3.1.1 Business-level Representation of Service Resources

Fig. 3 shows the principal of VINCA metaphor. The upper right part illustrates Service
Community - a supporting environment for VINCA [Cafi02b], which includes Business Services,
Semantic Services, Convergent Relation and Semantic Infrastructure. Business Services are
business-level services in VINCA. They are defined by domain experts to express typical
domain-specific norms and functionalities, and are represented to end-users in a hierarchical
structure according to some application specific classification system. Semantic Services are our
semantic Web services, which are created by adding semantic annotations to Web services and
registering it to Service Community. With the help of Semantic Infrastructure and Convergent
Relation, functional and nonfunctional semantics of Semantic Services are captured by Business
Services and further these semantics are represented to end-users visually.

Semantic Services

Business Services Business -level Model

Convergent
Relation

 …

…

…
As s ociation

Web Services
Software-level Model

Semantic
Infrastructure

Reference

Reference

Service Community

Mapping by

Convergent Relation

As s ociation

Fig. 3: The principal of VINCA metaphor

3.1.2 Convergence of Business and Software Level Modeling

The concept of convergent engineering is proposed by David Taylor in 1995, who seeks to
construct software system directly through business designing. It can bridge the gap between

business domain and software domain and enable software to adapt to ever-changing business
[Tayl95].
VINCA establishes a convergent relation to connect business-level services and software-level
services. As shown in Fig. 3, a convergent relation is used to map the business-level model to the
software-level model. Expressed by VINCA, a business-level model is designed to reflect business
requirements with a minimal set of business-end programming concepts and mechanisms, which
is easy for a business end-user to understand and master. A business end-user can (re)configure
her applications by building or editing business-level model. A software-level model deals with
compositions of Web Services. The Convergent Relation helps to map simple and intuitive
business-level elements into more concrete and executable software-level elements and still keep
the semantic consistency between them, which is supported by the Semantic Infrastructure. The
Semantic Infrastructure enables the semantic references and is constructed with an ontology
approach. It includes common consensus semantics and can be used by people, databases, and
applications that need to share domain knowledge.

3.1.3 Multiple Modes of End-user Programming

As shown in Fig. 4, there are three modes of applying VINCA to compose service-oriented
applications. Each mode is suitable for a certain typical usage situation and has different capability
requirements for end-users.

Temporal Patten

Bus iness Service

Bus iness Process

Mode 1

Mode 2

Mode 3

Fig. 4: Three development modes of VINCA
1) WYSIWYG (What You See Is What You Get): If an end-user can find a suitable Business

Service that meets her requirements from Service Community, she can just double-click the
Business Service to execute it directly. This mode has least demand on end-users’ capability.

2) Semi-automatic composition with Temporal Pattern: In some situations (such as personalized
application), control logic is weak and most services are executed by time in the whole
process. In such situations, VINCA application can be constructed easily with Temporal
Pattern. A Temporal Pattern is a block of time period that has a start time and an end time.
When an end-user drops Business Services onto a Temporal Pattern, it will arrange these
Business Services according to her dropping order automatically. The detailed information of
Temporal Pattern can be found in [Hu04].

3) Full-fledged business programming: If there are no suitable Business Services that can
directly meet an end-user’s requirements and this end-users does not want to use the
Temporal Pattern, she can compose her VINCA application with this mode. Firstly she can
select proper Business Services from Service Community and put them onto the “Editor”
field of VINCA-GUI. Then she can define the control flow of these Business Services such
as sequence, parallel, switch etc. After configuring parameters for Business Services, her
VINCA application is constructed. This mode is the most complex but yet the most powerful
one. Users of this mode need to know some process control logic.

3.1.4 Awareness of User-Context

User-context plays an important role in providing personalized services to end-users. The main
features include: 1) triggering service execution according to user-context; 2) providing adaptable
personalized services to the user by user-context-based service selection and composition; 3)
reducing interactions between the application and the user by making context as implicit inputs of
the application. For example, if we treat the location information as Mr. Johnson’s context and use
it as an implicit input to “Enquire Restaurant” service, Mr. Johnson will always get the right
information of restaurants around him without any input action. Context-aware related
technologies employed by VINCA can be found in [Liu04].

3.1.5 Multiple Interaction Channels

Today, users have multiple choices to interact with an information system. Three kinds of interaction
channels (Internet Browser, smart phone and PDA) are supported by VINCA at present to
describe the different ways of service delivery. For different channels, the system will transform
the response message to a suitable format, such as HTML, cHtml or WML.

3.2 Language Definition
In this section we concisely describe the syntax3 of the core elements of VINCA. A complete
reference can be found in Appendix 1.

3.2.1 VINCA Application

A VINCA application includes four parts: vincaApplication=(businessServices, process,
userContext, interaction). The businessServices defines end-user’s personalized Business Services.
The process describes the control flow and/or time order of businessServices. The userContext
describes personalized user-context in a hierarchical way and the interactions describes the
interactions between a VINCA application and its users.
The expression language of VINCA can be local or XPath [XPat99]. The local defined expression
language is used in current version.

3 The syntax definition uses an informal format to describe the XML grammar for easy reading:
z The syntax appears as an XML instance, but the values indicate the data types instead of values.
z Grammar elements in bold need further definition.
z Characters are appended to elements and attributes as follows :?(0 or 1), *(0 or more), +(1 or more).
z Elements and attributes separated by | and grouped by (and) are meant to be syntactic alternatives.

vincaApplication::=<vincaApplication name=”ncname” targetNamespace=”uri”
author=”ncname”? createDate=”date”?
description=”String”?
expressionLanguage=”local|XPath”?>

 businessServices
process
userContext
interactions

</vincaApplication>

3.2.2 Business Services

The businessServices element is the collection of businessService elements. The businessService is
the specification of end-user’s personalized Business Service. An end-user’s functional and
non-functional requirements are captured in her personalized Business Services’ semantics that
include both functional semantics and QoS semantics. The semantics attribute is a URI linking to
a DAML-S [DAML02] document that describes such semantics of a Business Service. We will
discuss the details of Business Service in section 4.

3.2.3 Process

The syntax of process element is much similar to common workflow language like the ones
described in [Andr03] and [Aals01]. Here we only describe the syntax of how a process node is
related to a Business Service.
The process element consists of an activity element. A task is a generic term for a service in the
process. It associates with a Business Service to be performed, also with an interaction element of
this Business Service.
The complete process definition of Mr. Johnson’s arrangement can be found in Appendix 2.

3.2.4 User Context

The userContext element records the personalized context information about an end-user. It
consists of four parts: user’s basic information, user’s preferences and constraints including time
and location. It is organized in a hierarchical structure.

businessServices::=<businessServices>
<businessService name=”ncname” label=”String”

author=”String”? description=”String”?
semantics=”anyURI”?/>+

 </businessServices>

task::=<task name=”ncname” businessService=”ncname”
 interaction=”ncname”
 start_time=”dateTime”? end_time=”dateTime”?/>

process::=<process name=”ncname”?>
 activity
 </process>
activity::=task | sequence | switch | parallel | while | wait | schedule | terminate

3.2.5 Interactions

In VINCA, a Business Service may have related interactions. Three patterns of interaction: input,
output and input-output can be defined to represent the input interface, the output interface and the
combined input-output interface separately. Each pattern includes a pre-defined interaction
template and a channel that can be PC Internet Browser, PDA Browser or Smart Phone Browser.

4 The Core Abstraction Mechanism: VINCA Business Service

As stated in section 3.1.1, concrete Web services are abstracted to Semantic Services and then
further abstracted to Business Services for end-users to manipulate. We establish a convergent
relation between Business Services and Semantic Services to keep their semantic consistency. On
the one hand, the semantics of Semantic Services are captured by Business Services with the help
of convergent relation and are visually represented to end-users to achieve service virtualization.
On the other hand, the convergent relation is also used to map Business Services to Semantic
Services to achieve dynamic service composition. In this section, we define Business Service and
the convergent relation, and discuss the usage and runtime behavior of Business Service. Finally
we conclude this section by discussing the impact of Business Service to the end-user
programming metaphor.

4.1 Business Service and Convergent Relation
As shown in Fig. 5, Business Services are outlined by domain experts according to the business
specifications of a certain domain, defining typical functionalities of the domain. Semantic
Services are semantically-annotated Web services that are provided by service providers. The right
part in Fig.6 is the resulting construct in VINCA, it is an agglomeration of three different types of
elements (BS, SS, Rcon,). BS is the set of all Business Services, SS is the set of all Semantic
Services, and Rcon: BS ↔ SS is the convergent relation between them. In the following
sub-sections, we will define Business Service, Semantic Service and the convergent relation Rcon

userContext::=<context name=”ncname” admin=”ncname”>
 identity
 preference
 location
 time
 </ userContext>

interactions::=<interactions>
 <interaction name=”ncname”>
 <pattern mode=”input|output|inout”>+
 <template name=”anyURI”/>
 <channel name=”PC|PDA|SmartPhone”/>
 </pattern>
 </interaction>
 </interactions>

separately.
Apparently, not all elements at the two levels can be converged. As shown in Fig. 5, there are also
Business Services (bs3) and Semantic Services (ss4) that can’t establish a convergent relation.

Domain Experts

Service Providers

bs1

bs2

Set of Business Service

Set of Service Instance

Converge

Convergence of
Business Services and

Service Instances

bs1 bs2

ss1
ss2

ss3

ss1
ss2 ss3

Provide

Provide

bs3

ss4

Fig. 5: Business Service, Semantic Service and their convergence

4.1.1 Business Service

Every Business Service bsi∈BS is a 5-tuple: bsi= (Id, La, Au, Desc, Se) where the first four
elements represent its identity, label, author and description respectively. Se is its semantics and is
stored in DAML-S format. Se is a 2-tuple: SE= (F, QoS), where F is the functional semantics and
QoS is the quality of service semantics. F is a 5-tuple, F= (Fc, I, O, P, E) where Fc is the
functional classification of Business Service, I, O, P, E are inputs, outputs, preconditions and
effects (we employ here the DAML-S canonical names) of Business Service in terms of ontology
concepts respectively. QoS is the set of non-functional metric Qi. Qi is a 4-tuple: Qi= (Na, Op, Va,
Unit), where Na, Op and Unit are this metric’s name, comparison operator, and unit of value in
terms of ontology concepts respectively. The Va is the value of this metric. Tab. 1 is an example of
Business Service EnquireWeather.

Id EnquireWeather
La Enquire Weather
Fc #EnquireWeather
I #Date, #Location
O #WeatherCondition
Q1 Na: #Cost
Q2 Na: #Reliability

Tab.1 Business Service EnquireWeather
Note that only the name attribute of each QoS metric of a Business Service is filled, while the
other parts are left for the end-user to specify when creating her personalized Business Service.

4.1.2 Semantic Service

Every Semantic Service ssj∈SS is a 7-tuple: ssj= (Id, La, Prov, Desc, WSDL-URI, Operation, Se),
where the first six elements represent its identity, label, provider, description, related Web service
WSDL file address, operation in this Web service respectively. Se is its semantics and has the
same definition as the Se defined in Business Service. Tab.2 is an example of Semantic Service
ForecastOfBeijing, where its functional classification #ForecastOfBeijing is subClassOf
#EnquireWeather in our ontology terminology model.

Tab.2 Semantic Service ForecastOfBeijing

Note that the effect semantics written in DAML-S is as follows:

4.1.3 Convergent Relation

A convergent relation is formed when a Semantic Service is registered to a Business Service:
Rcon = {(bsi, ssj) | bsi∈BS ∧ ssj∈SS ∧ convergent(bsi, ssj)}, where the predicate
convergent(bsi, ssj) is defined as the conjunction of following formulae:
1. Fc(ssj)=Fc(bsi) ∨ subClassOf (Fc(ssj), Fc(bsi))
2. IO_Match(bsi, ssj)
3. QoS_Compatible (bsi, ssj)
4. P(bsi)= P(ssj)
The first formula means that the functional classification of ssj exactly matches or is sub-class of
the functional classification of bsi in the ontology hierarchy.
The second formula means that there is an I/O match between bsi and ssj. We adopt the algorithm
from [Paol02].
To explain formula 3, we first define the QoS compatible relation: QoS_Compatible (bsi, ssj) iff
for all Qi of bsi, there exist a Qj of ssj, where na(Qi)=na(Qj). This relation means for every QoS
metric defined in Business Service, there is a counterpart in its convergent Semantic Service.
The fourth formula means that their precondition should be exactly matched.
For example, Business Service EnquireWeather and Semantic Service ForecastOfBeijing can
converge, i.e., (EnquireWeather, ForecastOfBeijing) ∈ Rcon.

4.2 Specification of Functional and QoS Requirements
Business Services in Service Community provides general service templates for end-users.
End-users can express their functional and QoS requirements by filling in these templates and
create their personalized Business Services.

Id ForecastOfBeijing
La Weather Forecast of Beijing
WSDL-URL http://flame:6888/Services/PublicService/

ForecastOfBeijing.wsdl
Operation WeatherForecast
Fc #ForecastOfBeijing
I #Date
O #WeatherCondition
E #EffectLocation(#WeatherCondition)=#LocationBeijing
Q1 Na: #Cost, Op: #Equal, Va: 8, Unit: #Yuan
Q2 Na: #Reliability, Op: #Equal, Va: 0.8

<rdf:Property rdf:ID="effectLocation">
 <rdfs:subPropertyOf rdf:resource="&process;#effect"/>
 <rdfs:domain rdf:resource="http://flame:6888/services/concepts.daml#WeatherCondition"/>
 <rdfs:range rdf:resource="http://flame:6888/services/concepts.daml#LocationBeijing"/>
</rdf:Property>

To express their requirements, an end-user can drag Business Services from the classification tree
and drop them onto her “Editor” field. Once a Business Service is dropped, a new personalized
Business Service is created, and the end-user can further specify its functional attributes like
inputs, outputs, effects etc. and QoS metrics like cost, reliability etc.
One of the novelties of our approach is that we use “Effect” semantics of Semantic Service to
express the capability of Business Service and further visualize the “Effect” semantics to the
VINCA graphical user interface. For example, if there is another Semantic Service
ForecastOfShanghai, its semantics differ with Semantic Service ForecastOfBeijing only in the
“Effect” part:
E(ForecastOfShanghai): #EffectLocation(#WeatherCondition)=#LocationShanghai
So when ForecastOfBeijing and ForecastOfShanghai are both registered to Business Service
EnquireWeather, end-users will know the capability of EnquireWeather, and they can specify their
functional requirements within the capability range. Note that the capability of a Business Service
is dynamic for the dynamism of its registered Semantic Services.
For example, Tab.3 is Mr. Johnson’s EnquireWeather Business Service. He wants to know the
weather of Beijing and the cost of this service should not exceed 10 Yuan.

Id EnquireWeather_Johnson
La Enquire Weather
FC #EnquireWeather
I #Date, #Location
O #WeatherCondition
E #EffectLocation(#WeatherCondition)=#LocationBeijing
Q1 #Cost, #LessThan, 10, #Yuan

Tab.3 Mr. Johnson’s personalized Business Service according to his requirements

4.3 Runtime Behavior of Business Service
To “execute” a Business Service at runtime, it should be mapped to Semantic Services first. A
matching algorithm is used to select elements among the Semantic Services that are registered to it.
In addition, if there are many candidates, a ranking algorithm adopted from [Siva03] is used.
The matching algorithm follows the criteria described bellow:
1. EMatch(ssj ,bsi)
2. QoS_Satisfiable(bsi, ssj)
In our current approach, EMatch(ssj ,bsi) is defined as E(ssj)= E(bsi). So there should be an exact
matching between the effect of ssj and the effect of bsi. But we are working on an approach to
express EMatch relation as logically entailment [Nils98]. For example, if some Semantic Service
can forecast the weather of Beijing and Shanghai, it can also match in effect with the Business
Service EnquireWeather_Johnson in Tab. 3, for its capability can satisfy the needs of
EnquireWeather_Johnson.
We convert the QoS_Satisfiable relation to a constraint satisfaction problem [Marr98]. It is a
normal approach and we do not discuss it here.

We have discussed the internal structure and various semantics of Business Service in the above
sub-sections. Here we discuss why these constructs can support end-user programming.
First of all, Business Services are virtualized representation of concrete Web services. From its
definition, we can see that technical details of Web services such as WSDL address, concrete data

types are hidden. We also can see from convergent relation that one Business Service represents
the aggregation of a group of functional related Web services. The functional and non-functional
semantics of these Web services are captured by Business Service through convergent relation.
Secondly, Business Services are organized according to their well-defined functional classification
semantics. So end-users have unanimous understanding to a concept and can locate their needed
Business Services easily. Thirdly, with the help of “Effect” semantics, end-users can know the real
capability of a Business Service. By specifying their personalized Business Services according to
their requirements, the matching algorithm will dynamically select the proper Web services to
execute for end-users.

5 An Approach to Applying VINCA for Service-Oriented Applications
The process of applying VINCA to compose service-oriented applications can be divided into
three stages: 1) Establish Service Community – the host of Business Services, Semantic Services
and Convergent Relation and Semantic Infrastructure, or use an already-existed one. 2) End-users
compose their programs visually by drag-and-dropping Business Services, connecting them with
control constructs or put them into the time slices, and then configuring their parameters like
inputs/outputs, interactions, context etc. 3) End-uses execute their programs, and interact with
them or monitor their running status. We will explain these three stages respectively in the
following subsections through the scenario illustrated in section 2.

5.1 Prerequisite – Building-Up of Service Communities

End-users compose VINCA programs on the basis of an existing Service Community. Service
Community organizes business services with an application-specific classification system for the
purpose of navigation and maintenance. The content of service community can be filled in the
following way: Domain experts establish the semantic infrastructure that can provide the ontology
for concepts in the application domain so that different users of the same domain can have a
unanimous understanding of concepts. Utilizing this pre-defined ontology, domain experts define
the specifications of Business Services that represent typical user requirements in this domain.
Still with the help of semantic infrastructure, service providers can add semantic information to
concrete Web services to create Semantic Services. Then service provider will add them to Service
Community and try to register them to Business Services. But Service Community will check the
semantic consistency, and the convergent relation may not be established if the check fails.
Let’s take the scenario illustrated in section 2 as an example: “Weather”, “Ticket”, “Hotel” and
other basic concepts should be described firstly to establish the semantic infrastructure in the
Service Community; after analyzing the typical user requirements in the FLAME2008 project,
“Enquire Weather”, “Book Plane Ticket”, “Book Hotel” and other Business Services are defined;
then semantic Web services such as forecastOfBeijing and forecastOfShanghai are added to the
Service Community and the convergent relation between Business Service EnquireWeather and
them will be established.

5.2 End-User Programming

As stated in section 3.3, end-users can construct their VINCA applications in different ways. Users
can also configure the context and interactions visually.
According to the scenario illustrated in section 2, Mr. Johnson may arrange his schedule with the
help of Temporal Pattern. He can drag-and-drop desired Business Services into proper time slices,

and then further can arrange them with control logic if needed. He may also configure the
“location” input parameter of “Enquire Restaurant” Business Service with his location context and
the interaction mode as “PDA” so that he can enquire the restaurant around him at dinnertime.

5.3 Just-in-Time Execution

After Mr. Johnson finished the arrangement of his schedule, he can monitor the execution state of
his VINCA application and interact with it conveniently. For example, when the “Enquire
Restaurant” Business Service is executed, the instant location of Mr. Johnson can be retrieved
from his PDA and be set as the input parameter. After the execution of the “Enquire Restaurant”
Business Service, the information of restaurant around him can be sent to his PDA.

6 A Supporting Environment: the VINCA Studio
We have implemented a prototype system called VINCA Studio to support end-user building
Web-based applications with VINCA. The system architecture of VINCA is shown in Fig. 6.

W eb S erv ices

V isua l P rogram m ing E nv ironm ent o f V IN C A

M app ing M odu le

B P E L4W S -based R unn ing E nv ironm ent

P
er

so
na

liz
ed

 In
fo

rm
at

io
n

M
an

ag
er

U se r C on text

access

A pp lica tion in V inca

B P E L4W S -based A pp lica tion

U se
P rocess B u ilde r C on text

C on figu ra tion

S
er

vi
ce

 C
om

m
un

ity

U se

U se

abstrac t

Invok ing

In te raction
C on figu ra tion

Fig. 6: the Supporting Environment: the VINCA Studio

The VINCA Visual Programming Environment enables end-users to express their requirements
from business viewpoint in a WYSIWYG (What You See Is What You Get) manner. Its output is
the so-called VINCA program – a set of specifications in XML. Then, the VINCA Mapping
Module will transform them into BPEL4WS-alike executable specifications.
The BPEL4WS-based Running Environment is responsible for chaining Web-based services at
operational level, and binding and invoking individual services. It consists of event manager,
application scheduler, location manager, time manager and process engine.
Fig. 7 is a snapshot of an end-user’s working interface supported by the business-end
programming environment that includes three components: Resource Browser, Application Editor
Panel, and Service Configuration Panel. The Resource Browser renders the well-organized
Business Services that can be used in public services; end-users can drag the needed Business
Services and drop them to the Application Editor Panel to compose their personalized application.
Through the Service Configuration Component, users’ personalized requirements on a Business
Service can be set.

Fig. 7: Snap-shot of VINCA Programming Environment

7 Application and Evaluation of VINCA
VINCA has been applied in several projects including FLAME2008 and AMGrid. AMGrid has
been shipped to its end-users in July 2004. Tab. 4 shows some statistics sampled from part of the
AMGrid project. Comparing with the end-user programming time, much more time is spent on
constructing a user-friendly AMGrid Service Community (including Web services Development,
Ontology Building and Business Service Definition). But the process of building the Service
Community is a one-time effort. Little time is needed to maintain it as soon as it is built. We can
also find that the time of composing a business process has been shortened to a magnitude of
minutes. Furthermore, it will be easy for end-users to reconfigure their processes, relieving the
burden of software maintainers. It is a very promising comparing to the situation of traditional
software development: software developers may delve themselves into coping with
infrastructure-level requirements, and end-users will be satisfied with composing and adjusting
their own business processes freely.

Tab. 4: AMGrid Project Statistics
Our work relates to several fields of research and technologies, including service virtualization,
dynamic service composition and context-aware computing.
We focus on the virtualization of a group of functional related Web services. Service Domain
[Khal03] [Tan03] represents a collection of comparable or related Web services through a
common services entry point. Service Container [Bena03] aggregates several other substitutable
services that provide a common capability. Although VINCA Business Service also represents a

Service Community
Scale

Service Community Build Time EUP Time

Business
Service
Quantity

Semantic
Service
Quantity

Building
Domain
Ontology

Defining
Business
Services

Developing
Web
services

Defining
Semantic
Service

Average
Time for
end-user to
compose a
process

20 30 4 Man*Day 10 Man*Day 18 Man*Day 2 Man*Day 20 Minute

group of capability related services, the main difference between these work and VINCA lies on
the user accessibility of VINCA Business Service.
We achieve dynamic service composition by mapping abstract process to concrete BPEL4WS
process. [Mand03] presents an approach to combining DAML-S and BPEL4WS for achieving
dynamic binding, where user-defined constraints are used in service selection. [Siva04] developed
a template-based approach to capturing the semantic requirements of process services in the
METEOR-S Web Service Composition Framework. [Akki04] provides a prototype workflow
engine that accepts abstract BPEL4WS flows augmented with semantic annotations in DAML-S
and performs runtime discovery, composition, binding and execution of web Services. A
significant difference between the existing efforts and our approach lies in that VINCA further
presents the semantic information of Web services to end-users visually. Mapping from abstract
Business Services to concrete Web services is done by selecting appropriate semantic Web
services from our Service Community. Such mapping does not need a service discovery process.
In VINCA, context-awareness is also considered to some extent.

8 Conclusion
In this paper, we have presented an end-user programmable dynamic service composition
language VINCA. The most significant feature of this language is its end-user programmability.
By virtualizing service resources to a business-level while keeping their semantic consistent with
software-level services, presenting multiple programming modes and sensing the user context,
end-users can “program” many of their applications with VINCA.
The development of VINCA is guided by a number of real-world scenarios to highlight its
practical usefulness. VINCA is used in the FLAME2008 and AMGrid projects to allow business
experts to transparently examine all scattered resources that are accessible and available to them
and to configure and reconfigure these resources in an easy and straightforward manner.
In the future, we plan to design a mechanism that allows end-users to express their requirements at
larger granularity abstraction level: a business process composed by Business Services can be
abstracted as another Business Services, and so on. The research work on a more effective
algorithm to implement the “Effect” semantics matching is ongoing.

References
[Aals001] WMP van der Aalst, A. Kumar, XML based schema definition for support of
Inter-organizational workflow, University of Colorado and Eindhoven University of Technology
Report, http://spot.colorado.edu/ ~akhil/pubs.html, 2001.

[Akki04]Rama Akkiraju, Kunal Verma, Richard Goodwin1, Prashant Doshi, Juhnyoung Lee,
Executing Abstract Web Process Flows, The 14th International Conference on Automated
Planning and Scheduling , (ICAPS 2004), Whistler, British Columbia, Canada, June 3-7 2004.

[Andr03] T Andrews, F Curbera, H Dholakia, et al., Business Process Execution Language for
Web Services, 2003. http://www-106.ibm.com/developerworks/ webservices/library/ws-bpel/
[Bena02] Benatallah B., Dumas M., Fauvet M. C. and Rabhi F.A, Towards Patterns of Web
Services Composition, Patterns and Skeletons for Parallel and Distributed Computing, S. Gorlatch
and F. Rabhi (Eds), Springer Verlag (UK) 2002.

[Bena03] B Benatallah, Q Sheng, M Dumas, The Self-Serv Environment for Web Services
Composition, IEEE Internet Computing, pp. 40-48, 2003, 7(1).

[BPMI02] BPMI.org, Business Process Modeling Language, http://www.bpmi.org/, 2002.

[Cafi02a] CAFISE group, AMGrid Project, Technical Report, Software Division, ICT, CAS,
2002.

[Cafi02b] CAFISE group, Service Community Specification, Technical Report, Software
Division, ICT of CAS, December 2002.

[DAML02] The DAML Service Coalition, DAML-S: Semantic Markup for Web Services,
http://www.daml.org/services/, October 2002.

[Doshi03] Prashant Doshi, Richard Goodwin, Rama Akkiraju. Parameterized Semantic Matching
for Workflow Composition. Draft In the works. Still to be published.

[Han03] Y Han, H Geng, H Li et al, VINCA - A Visual and Personalized Business-level
Composition Language for Chaining Web-based Services, First International Conference on
Service-Oriented Computing, Trento, Italy, pp. 165-177, 2003.

[Holt03] B. Holtkamp, R. Gartmann, Y. Han, FLAME2008-Personalized Web Services for the
Olympic Games 2008 in Beijing, Proceedings of eChallenges 2003, Bologna, Italy, Oct. 2003.

[Hu04] Haitao Hu ,Yanbo Han,Kui Huang , Gang Li, Zhuofeng Zhao, A Pattern-based Approach
to Facilitating Service Composition, The Third International Workshop on Grid and Cooperative
Computing (GCC2004), Wuhan, China, 2004.

[Kei02] Keith Levi, Ali Arsanjani, A Goal-driven Approach to Enterprise Component
Identification and Specification, Communications of the ACM, p. 45-52, 2002. 45(10).

[Kha03] R Khalaf, F Leymann, On Web Services Aggregation, 4th International Workshops on
Technologies for E-services in Conjunction with the VLDB conference, Berlin, Germany, pp.
1-13, 2003.

[Levi 2003] D.S.Levi et al., Designing and Managing the Supply Chain, McGraw-Hill, 2003.

[Liu04] Hao Liu, Yanbo Han, Gang Li and Cheng Zhang, Achieving Context Sensitivity of
Service-oriented Applications with the Business-end Programming Language VINCA, The Third
International Workshop on Grid and Cooperative Computing (GCC2004), Wuhan, China, 2004.

[Mand03] Mandel, D., McIIraith S., 2003 Adapting PBEL4WS for the semantic web: The bottom
up approach to web service interoperation Second International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, 2003.

[Marr98] K Marriot, P Stuckey. Programming with Constraints: An Instruction. MIT Press, 1998.

[Nils98] Nils J. Nilsson, Artificial Intelligence, A New Synthesis, Morgan Kaufmann Publishers,
chapter 13.8.2-metatheorems, 1998.

[Paol02] Paolucci, M., Kawamura, T., Payne, T., and Sycara, K., Semantic matching of web
services capabilities, International Semantic Web Conference, Sardinia, Italy, June 9-12, 2002.

[Reic96] Reichert, M., Kuhn, K., and Dadam, P, Process Reengineering and Process Automation
in Clinical Application Environments (in German), Proc. GMDS'96 (pp. 219-223). Bonn,
Germany: MMV Medizin Verlag, 1996.

[Siva03] Sivashanmugam, K. , The METEOR-S Framework for Semantic Web Process
Composition , M.S. Thesis , Department of Computer Science, University of Georgia, Athens, GA.

Slides: pdf , powerpoint-show, 2003.

[Siva04] Kaarthik Sivashanmugam, John Miller, Amit Sheth, and Kunal Verma, Framework for
Semantic Web Process Composition, Semantic Web Services and Their Role in Enterprise
Application Integration and E-Commerce, Special Issue of the International Journal of Electronic
Commerce (IJEC), Eds: Christoph Bussler, Dieter Fensel, Norman Sadeh, Feb 2004.

[SOA] www.service-architecture.com

[Tayl95] D. Taylor, Business Engineering with Object Technology, John Wiley & Sons, 1995.

[Tan03] Y Tan, B Topol, V Vellanki, et al, Business service grid: Manage Web services and Grid
services with Service Domain Technology, 2003.
http://www-106.ibm.com/developerworks/grid/library/gr-servicegrid

[XPath, 1999] XML Path Language (XPath)Version 1.0,
http://www.w3.org/TR/1999/REC-xpath-19991116

Appendix 1. VINCA Syntax
1. VINCA Application

vincaApplication::=<vincaApplication name=”ncname” targetNamespace=”uri”

author=”ncname”? createDate=”date”?

description=”String”?

expressionLanguage=”local|XPath”?>

 businessServices

process

userContext

interactions

</vincaApplication>

2. Business Service

businessServices::=<businessServices>

<businessService name=”ncname” label=”String”

author=”String”? description=”String”?

semantics=”anyURI”?/>+

 </businessServices>

3. process

process::=<process name=”ncname”?>

 activity

 </process>

4. activity

activity::=task | sequence | switch | parallel | while | wait | schedule | terminate

5. task

task::=<task name=”ncname” BusinessService=”ncname”

 interaction=”ncname”

 start_time=”date”? end_time=”date”?/>

6. sequence

sequence::=<sequence>

 activity+

 </sequence>

7. switch

switch::=<switch>

 <case condition=”bool-expr”>+

 activity

 </case>

 <otherwise>?

 activity

 </otherwise>

 </switch>

8. parallel

parallel::=<parallel>

 activity+

 </parallel>

9. while

while::=<while condition=”bool-expr”>

 activity

 </while>

10. wait

wait::=<wait for=”duration-expr” | until=”deadline-expr” />

11. schedule

schedule::=<schedule from=”dateTime” to=”dateTime”>

 activity+

 </schedule>

12. terminate

terminate::=<terminate/>

13. context

userContext::=<userContext name=”ncname” admin=”ncname”>

 identity

 preference

 location

 time

 </userContext>

14. identity

identity::=<identity>

 <identityItem>*

 contextItem

 </identityItem>

</identity>

15. preference

preference::=<preference>

 <preferenceItem>*

 contextItem

 </preferenceItem>

</preference>

16. location

location::=<location>

 contextItem

 </location>

17. time

time::=<time>

 contextItem

 </time>

18. contextItem

contextItem::=<contextItem category=”String” semantics=”anyURL” value=”String”/>

19. interactions

interactions::=<interactions>

 <interaction name=”ncname”>

 <pattern mode=”input|output|inout”>+

 <template name=”anyURI”/>

 <channel name=”PC|PDA|SmartPhone”/>

 </pattern>

 </interaction>

 </interactions>

Appendix 2. Process Definition of Mr. Johnson’s Schedule
<?xml version="1.0"?>

<process name="ArrangementOfJohnson">

<sequence>

 <schedule from="2008-07-10T08:00:00" to="2008-07-11T00:00:00">

 <sequence>

 <task name="bookPlaneTicket" businessService="bookPlaneTicket"

 interaction="interactionBPT"/>

 <parallel>

 <task name="reserveHotel" businessService="reserveHotel"

 interaction="interactionRH"/>

 <task name="bookTennisTicket" businessService="bookOlympicGameTicket"

 interaction="interactionBOGT"/>

 </parallel>

 </sequence>

</schedule>

<schedule from="2008-08-09T08:00:00" to="2008-08-10T00:00:00">

 <sequence>

 <task name="enquireWeather" businessService="enquireWeather"

 interaction="interactionEQW"/>

 <switch>

 <case condition="enquireWeather.output.WeatherCondition=&concept;#rainy">

 <task name="reserveTour" businessService="reserveTour "

 interaction="interactionRESTOUR"/>

 </case>

 <otherwise>

 <task name="reserveTour" businessService="reserveTour "

 interaction="interactionRESTOUR"/>

 </otherwise>

 </switch>

 </sequence>

 </schedule>

<schedule from="2008-08-12T17:00:00" to="2008-08-12T17:30:00">

 <task name="enquireRestaurant" businessService="enquireRestaurant"

 interaction="interactionENQRESTR"/>

</schedule>

 </sequence>

</process>

